The following examples use the following table_string helper to succintly define tables:
# Convert a string into a data.frame
table_string <- function (text, ...) read.table(
text = text,
blank.lines.skip = TRUE,
header = TRUE,
stringsAsFactors = FALSE,
...)
Firstly, connect to a database and set up some areas/divisions:
mdb <- mfdb(tempfile(fileext = '.duckdb'))
mfdb_import_area(mdb, table_string('
name division size
45G01 divA 10
45G02 divA 200
45G03 divB 400
'))
Normally when using mfdb_import_survey
you supply
count
, length
, weight
columns.
But other lenghts can also be supplied:
To get any additional weights back when querying, you need to supply measurements, for example:
agg_data <- mfdb_sample_totalweight(mdb, c('age'), list(
age = mfdb_unaggregated(),
null = NULL), measurements = c('overall', 'liver', 'gonad', 'stomach'))
agg_data
## $`0.0.0.0`
## year step area age total_weight total_liver_weight total_gonad_weight
## 1 all all all 2 210 93 82
## 2 all all all 3 220 28 93
## 3 all all all 4 230 93 85
## total_stomach_weight
## 1 72
## 2 99
## 3 72
Single measurements are also possible:
agg_data <- mfdb_sample_totalweight(mdb, c('age'), list(
age = mfdb_unaggregated(),
null = NULL), measurements = c('stomach'))
agg_data
## $`0.0.0.0`
## year step area age total_stomach_weight
## 1 all all all 2 72
## 2 all all all 3 99
## 3 all all all 4 72
We can also use mfdb_sample_meanweight
to aggregate:
agg_data <- mfdb_sample_meanweight(mdb, c('age'), list(
null = NULL), measurements = c('liver', 'stomach'))
agg_data
## $`0.0.0.0`
## year step area age number mean_liver_weight mean_stomach_weight
## 1 all all all all 3 71.33333 81
As well as mfdb_sample_meanweight_stddev
:
agg_data <- mfdb_sample_meanweight_stddev(mdb, c('age'), list(
null = NULL), measurements = c('overall', 'gonad'))
agg_data
## $`0.0.0.0`
## year step area age number mean mean_gonad_weight stddev stddev_gonad_weight
## 1 all all all all 3 220 86.66667 10 5.686241